Course Specifications

Programme(s) on which the course is a	given : P., P.&Ch.,	
Major or Minor element of programm	es : major - minor	
Department offering the programme : Physics		
Department offering the course	: Physics	
Academic year / Level	:2	
Date of specification approval:	: 2012	
A- Basic Information		
Title: Nuclear Physics	Code: P254	
Credit Hours: 3 h	Lecture: 3	
Tutorial: 0 Practicals: 0	Total: 3	
B- Professional Information		

1 – Overall Aims of Course

*To provide a good base about the over all properties of atomic nucleus

including size, charge, mass and nuclear binding.

*To provide reason for why are some isotopes stable and others are not.

*To provide roles of radiation decay processes and energies of emitted

radiation.

*To provide a comprehensive Knowledge about types, properties

interactions, detections of different kinds of ionizing radiations.

*To provide topics on the behavior of radiations emitted from

radioactive sources and the laws that covering the processes.

*To present topics on the interactions of different kinds of radiations

(charged and neutral ones) with matter.

*To study units of exposure, dose and dose equivalent.

*To study, in details, the natural decay series, i-e- origin and type of

radiation emitted.

*To develop problem solving skills covering the different topics of

the course.

2 – Intended Learning Outcomes of Course (ILOs)

a- Knowledge and Understanding:

a1- Brief review on atomic structure

a2- Nuclear structure and constituents of the nucleus

a3- Properties of Nuclear force, binding energy and stability of nuclei.

a4- Natural and artificial radioactive transformation. a5- Decay modes (Alpha, Beta and Gamma, neutrino, neutron)

a6- Stopping power and radiation shields and units a7- Radiation detection using gas and scintillation counters.

a8- Concentration on the physics insights in all materials involved

B-Intellectual Skills

b1 - Providing highlights and strong attention to student to make their opinion

about the importance of the nuclear technology.

C-Professional and Practical Skills

C1-The ability of the student to think about the natural radiations surrounding our world and to attain a strong feeling against the radiation pollution arising from the military use of nuclear technology.

C2-To gain experience dealing with the radiation sources and radiation detectors.

C3-Understanding the different mathematical treatment through the various parts of the course. D- General and Transferable Skills

d1. gaining experience from dealing with the inter net searching for some materials included in the course in order to build a student shelf independent character.

d2. gaining experience on how can students deal with radioactive

sources

3- Contents

Торіс	No. of hou rs	lectur e	Tutori al/pra ctical
Atomic and nuclear structure	3	1	0
Theory of Beta and Gamma	6	2	0
Theory of alpha Decay	6	2	0
Theory of Gamma Decay	6	2	0
Neutron Source and Interactions	3	1	0
Origin of radiation and radiation Sheild	3	1	0
Radioactivity, decay low and nature series	6	2	0
Radiactive dating and	3	1	0
radiation units			
Radiation Detection	6	2	0
Total	42	14	0

4– Teaching and Learning Methods

4.1 _ lectures

4.2 – discussions

5- Student Assessment Methods 5.1 – midterm written exam to assess understanding about the covered first part of the course 5.2 – semester activity to develop communication skills 5.3 – final written exam to assess the overall gain from the course materials 5.4 – homework sheets to assess solving problems skills and time constrain **Assessment Schedule** Oral 5th Week Assessment 1: 7th week. Assessment 2 Midterm Exam: Assessment 3: problem solving 9th Week. Assessment 3 final writing Exam: 14th Week. Weighting of Assessments **Mid-Term Examination** 20 % **Final-term Examination** 60 % **Oral Examination & problem solving** 20 % Total 100% 6- List of References **6.1-** Course Notes **6.2-** Essential Books (text books). -K.S.Krane, Introduction nuclear Physics (Ionh Wiely & sons, New Yourk, 1998) - P. E. Hodgson, E. Gadioli and E. Go, **Introductory nuclear physics (Oxford Science Publications**, 2000) **6.3- Recommended Books** -K.S.Krane, Introduction nuclear Physics (Ionh Wiely & sons, New Yourk, 1998)

- P. E. Hodgson, E. Gadioli and E. Go,
Introductory nuclear physics (Oxford Science Publications, 2000)
6.4-Periodicals, Web Sites,ect Nuclear section
Radiation section
Modern physics

7- Facilities Required for Teaching and Learning:

1. Data Show, Overhead projector and white board **2.** Traditional methods

Course Coordinator:Prof. Dr. Abdel Azim HusseinHead of Department:Prof. Dr. Sana MaizeDate:/